Solutions de la Série N^o2 : Application linéaire, Endomorphisme et isomorphisme

Exercice 1

- 1. Montrer que $(\mathbb{R}^2, +, \cdot)$ est un espace vectoriel sur \mathbb{R} .
- 2. Soient $E = \{(x, -x); x \in \mathbb{R}\}\$ et $F = \{(x, x); x \in \mathbb{R}\}\$ deux ensembles.
 - (a) Montrer que E et F sont deux sous-espaces vectoriels de \mathbb{R}^2 .
 - (b) Montrer que E et F sont supplémentaires dans \mathbb{R}^2 .

Solution:

- 1. Montrons que $(\mathbb{R}^2, +, \cdot)$ est un espace vectoriel sur \mathbb{R} :
 - i) $(\mathbb{R}^2, +)$ est un groupe abélien, en effet
 - L'élément neutre pour la loi + est $0_{\mathbb{R}^2} = (0,0) \in \mathbb{R}^2$, alors $\mathbb{R}^2 \neq \emptyset$.
 - soit X = (x, y) et Y = (x', y') deux éléments de \mathbb{R}^2 , on a

$$X + Y = (x, y) + (x', y') = (x + x', y + y') = (\xi, \zeta)$$

où $\xi = x + x' \in \mathbb{R}$ et $\zeta = y + y' \in \mathbb{R}$, donc $X + Y \in \mathbb{R}^2$.

– Soit X=(x,y) un élément dans \mathbb{R}^2 , alors il existe $X'\in\mathbb{R}^2$ tel que $X+X'=0_{\mathbb{R}^2}$, donc

 $X'=0_{\mathbb{R}^2}-X=(0-x,0-y)=-(x,y),$ d'où X'=-(x,y) est l'opposé de X dans $\mathbb{R}^2.$

– Soit X = (x, y) et X' = (x', y') dans \mathbb{R}^2 , alors

$$X + X' = (x, y) + (x', y') = (x + x', y + y')$$

or x+x'=x'+x et y+y'=y'+y dans $\mathbb R$ puisque $\mathbb R$ est un corps commutatif, alors

$$X + X' = (x' + x, y' + y) = (x', y') + (x, y) = X' + X'$$

donc la loi + est commutative.

ce qui prouve que $(\mathbb{R}^2, +)$ est un groupe abélien.

ii) Soit X=(x,y) et X'=(x',y') deux éléments de \mathbb{R}^2 et $\lambda\in\mathbb{R}$, on a

$$\lambda.(X + X') = \lambda.(x + x', y + y') = (\lambda(x + x'), \lambda(y + y'))$$

$$= (\lambda x + \lambda x', \lambda y + \lambda y')$$

$$= (\lambda x, \lambda y) + (\lambda x', \lambda y')$$

$$= \lambda(x, y) + \lambda(x', y')$$

$$= \lambda X + \lambda X'$$

car (\mathbb{R}, \times) est un groupe commutatif, donc la loi \times est distributive par rapport à la loi $+\cdot$

iii) Soit X=(x,y) un éléments de \mathbb{R}^2 et α et β dans \mathbb{R} , on a

$$\alpha(\beta X) = \alpha(\beta x, \beta y) = (\alpha \beta x, \alpha \beta y) = (\alpha \beta)(x, y) = (\alpha \beta)X$$

donc la loi \times est associative pour la structure d'espaces vectoriels.

iv) l'élément neutre pour la loi × est 1, en effet

$$1.X = 1.(x, y) = (1.x, 1.y) = (x, y) = X$$

 $\operatorname{car} 1x = x \text{ et } 1y = y$

d'après i), ii), iii) et iv) on déduit que $(\mathbb{R}^2, +, \times)$ est un \mathbb{R} -espace vectoriel.

- 2. Soient $E = \{(x, -x); x \in \mathbb{R}\}$ et $F = \{(x, x); x \in \mathbb{R}\}$ deux ensembles.
 - (a) Montrons que E et F sont deux sous-espaces vectoriels de \mathbb{R}^2 :
 - i. E est un sous-espace vectoriel de \mathbb{R}^2 en effet,
 - $-E \neq \emptyset$ car $0_{\mathbb{R}^2} = (0,0) = (0,-0)$ est un élément de E.
 - Soit X = (x, -x) et X' = (x', -x') dans E, on a

$$X + X' = (x, -x) + (x', -x') = (x + x', -x - x') = (x + x', -(x + x')),$$

donc en posant $\xi = x + x'$ on a $\xi \in \mathbb{R}$ et $X + X' = (\xi, -\xi) \in E$, d'où E est stable pour la loi $+\cdot$

– Soit X=(x,-x) dans E et $\lambda \in \mathbb{R}$, on a $\lambda X=\lambda(x,-x)=(\lambda x,-\lambda x)=(\zeta,-\zeta)$ où $\zeta=\lambda x\in \mathbb{R}$, d'où $\lambda X\in E$, c'est à dire que E est stable par la multiplication externe.

finalement E est un sous-espace vectoriel de \mathbb{R}^2 .

- ii. F est un sous-espace vectoriel de \mathbb{R}^2 en effet,
 - $-F \neq \emptyset$ car $0_{\mathbb{R}^2} = (0,0)$ est un élément de F.
 - Soit X = (x, x) et X' = (x', x') dans E, on a

$$X + X' = (x, x) + (x', x') = (x + x', x + x'),$$

donc en posant $\xi = x + x'$ on a $\xi \in \mathbb{R}$ et $X + X' = (\xi, \xi) \in F$, d'où F est stable pour la loi $+\cdot$

– Soit X = (x, x) dans F et $\lambda \in \mathbb{R}$, on a $\lambda X = \lambda(x, x) = (\lambda x, \lambda x) = (\zeta, \zeta)$ où $\zeta = \lambda x \in \mathbb{R}$, d'où $\lambda X \in F$, c'est à dire que F est stable par la multiplication externe.

finalement F est un sous-espace vectoriel de \mathbb{R}^2 .

- (b) Montrons que E et F sont supplémentaires dans \mathbb{R}^2 :
 - i. Soit $X \in E \cap F$, alors X = (x, x) et X = (x, -x), donc x = -x ce qui montre x = 0,

d'où $X = (0,0) = 0_{\mathbb{R}^2}$, d'où $E \cap F \subset \{0_{\mathbb{R}^2}\}$.

Comme E et F sont deux sous-espaces vectoriels de \mathbb{R}^2 alors $\{0_{\mathbb{R}^2}\}\subset E\cap F$, d'où $E\cap F=\{0_{\mathbb{R}^2}\}$.

ii. Soit $Y \in \mathbb{R}^2$, montrons que Y = (y, y') = (x, -x) + (x', x'). On a (y, y') = (x, -x) + (x', x'), alors

$$\begin{cases} y = x + x' \\ y' = -x + x' \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2}(y + y') \\ x' = \frac{1}{2}(y - y') \end{cases}$$

d'où
$$(y, y') = \left(\frac{1}{2}(y - y'), -\frac{1}{2}(y - y')\right) + \left(\frac{1}{2}(y + y'), \frac{1}{2}(y + y')\right)$$
, soit $\mathbb{R}^2 = E + F$

d'après i) et ii) on vient de prouver que $\mathbb{R}^2 = E \oplus F$.

Exercice 2

Soit $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices d'ordre 2 à coefficients réels.

- 1. Montrer que $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ est un \mathbb{R} -espace vectoriel.
- 2. On considère $E = \left\{ M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; (a,b) \in \mathbb{R}^2 \right\}$
 - (a) Montrer que E est un espace vectoriel sur \mathbb{R} .
 - (b) On pose $J=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$. Montrer que le système $\{I,J\}$ est une base de E où $I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$.
 - (c) On pose $E_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}; a \in \mathbb{R} \right\}$ et $E_2 = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}; b \in \mathbb{R} \right\}$. Montrer que $E = E_1 \oplus E_2$.

Solution : Considérons $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices d'ordre 2 à coefficients réels.

- 1. Montrons que $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ est un \mathbb{R} -espace vectoriel :
 - i) $(\mathcal{M}_2(\mathbb{R}), +)$ est un groupe abélien, en effet,
 - soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ deux éléments de $\mathcal{M}_2(\mathbb{R})$, alors on a

$$A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \sigma \end{pmatrix}$$

où $\alpha=a+a',\ \beta=b+b',\ \gamma=c+c'$ et $\sigma=d+d'$ sont des réels, d'où $A+B\in\mathcal{M}_2(\mathbb{R}).$

- Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{R})$, la matrice nulle $0_{\mathcal{M}_2(\mathbb{R})} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ est l'élément neutre de $\mathcal{M}_2(\mathbb{R})$ pour l'addition, ceci puisque

$$A + 0_{\mathcal{M}_2(\mathbb{R})} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a + 0 & b + 0 \\ c + 0 & d + 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A.$$

– Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{R})$, alors il existe B une matrice dans $\mathcal{M}_2(\mathbb{R})$ telle que $A + B = 0_{\mathcal{M}_2(\mathbb{R})}$, en effet,

$$A + B = 0_{\mathcal{M}_2(\mathbb{R})} \quad \Leftrightarrow \quad B = 0_{\mathcal{M}_2(\mathbb{R})} - A = \begin{pmatrix} 0 - a & 0 - b \\ 0 - c & 0 - d \end{pmatrix}$$

d'où $B = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} = -A$ est l'opposé de A dans $\mathcal{M}_2(\mathbb{R})$ pour l'addition.

– Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ deux éléments de $\mathcal{M}_2(\mathbb{R})$, alors on a

$$A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a + a' & b + b' \\ c + c' & d + d' \end{pmatrix}$$

Comme $(\mathbb{R}, +)$ est abélien, alors a + a' = a' + a, b + b' = b' + b, c + c' = c' + c et d + d' = d' + d, donc

$$A + B = \begin{pmatrix} a' + a & b' + b \\ c' + c & d' + d \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = B + A$$

d'où $(\mathcal{M}_2(\mathbb{R}), +)$ est abélien.

ii) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ deux éléments de $\mathcal{M}_2(\mathbb{R})$ et soit λ un réel, alors on a

$$\lambda.(A+B) = \lambda. \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \right] = \lambda \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$$

$$= \begin{pmatrix} \lambda(a+a') & \lambda(b+b') \\ \lambda(c+c') & \lambda(d+d') \end{pmatrix} = \begin{pmatrix} \lambda a + \lambda a' & \lambda b + \lambda b' \\ \lambda c + \lambda c' & \lambda d + \lambda d' \end{pmatrix}$$

$$= \begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix} + \begin{pmatrix} \lambda a' & \lambda b' \\ \lambda c' & \lambda d' \end{pmatrix}$$

$$= \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \lambda \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$

$$= \lambda A + \lambda B.$$

donc la loi \times est distributive par rapport à la loi +.

iii) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{R})$ et soit α et β deux réels, on a

$$\alpha(\beta A) = \alpha \cdot \left[\beta \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right] = \alpha \begin{pmatrix} \beta a & \beta b \\ \beta c & \beta d \end{pmatrix}$$
$$= \begin{pmatrix} \alpha \beta a & \alpha \beta b \\ \alpha \beta c & \alpha \beta d \end{pmatrix} = \begin{pmatrix} (\alpha \beta) a & (\alpha \beta) b \\ (\alpha \beta) c & (\alpha \beta) d \end{pmatrix}$$
$$= (\alpha \beta) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (\alpha \beta) A.$$

donc la loi \times est associative dans $\mathcal{M}_2(\mathbb{R})$.

iv) Le nombre 1 est un élément neutre pour la multiplication dans $\mathcal{M}_2(\mathbb{R})$, en effet, soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{R})$, on a

$$1.A = 1. \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1.a & 1.b \\ 1.c & 1.d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = A.$$

D'après i), ii), iii) et iv), on a prouvé que $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$ est un \mathbb{R} -espace vectoriel.

- 2. On considère $E = \left\{ M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}; \quad (a,b) \in \mathbb{R}^2 \right\}$
 - (a) Montrons que E est un espace vectoriel sur \mathbb{R} .
 - i) Comme $0_{\mathcal{M}_2(\mathbb{R})} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ est un élément de E, alors $E \neq \emptyset$.
 - ii) Soit $M_{a,b}=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ et $M_{c,d}=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ deux éléments de E, on a

$$M_{a,b} + M_{c,d} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

où $\alpha = a + c$ et $\beta = b + d$. Donc $M_{a,b} + M_{c,d} \in E$, d'où E est stable par la loi + comme étant une loi interne.

iii) Soit $M_{a,b}=\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ un élément de E et λ un réel, on a

$$\lambda M_{a,b} = \lambda \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} \lambda a & \lambda b \\ -\lambda b & \lambda a \end{pmatrix} = \begin{pmatrix} \gamma & \sigma \\ -\sigma & \gamma \end{pmatrix}$$

où $\gamma = \lambda a$ et $\sigma = \lambda b$. Donc $\lambda M_{a,b} \in E$, d'où E est stable par la loi \times comme loi externe.

D'après i), ii) et iii), E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$, ce qui montre que $(E, +, \times)$ est un \mathbb{R} -espace vectoriel.

- (b) Soit $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Montrons que le système $\{I, J\}$ est une base de E:
 - i) Soit $M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ un vecteur dans E, on a

$$M_{a,b} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = aI + bJ$$

donc le système $\{I,J\}$ engendre E.

ii) Soit α et β des réels tels que $\alpha I + \beta J = 0_{\mathcal{M}_2(\mathbb{R})}$. Montrons que $\alpha = \beta = 0$.

$$\alpha I + \beta J = 0_{\mathcal{M}_2(\mathbb{R})} \quad \Leftrightarrow \quad \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

donc $\alpha = \beta = 0$, ce qui prouve que le système $\{I,J\}$ est libre.

d'après i) et ii) on a montré que le système $\{I, J\}$ est une base de E

(c) On pose $E_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}; a \in \mathbb{R} \right\}$ et $E_2 = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}; b \in \mathbb{R} \right\}$, montrons que $E = E_1 \oplus E_2$.

i) Soit $X \in E$ alors ceci est équivalent à dire qu'il existe a et b dans \mathbb{R} tels que

$$X = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = aI + bJ$$

donc $X \in E1 + E_2$ car $aI \in E_1$ et $bJ \in E_2$, d'où $E = E_1 + E_2$.

ii) Soit $X \in E_1 \cap E_2$, alors $X \in E_1$ et $X \in E_2$, donc il existe a et b dans \mathbb{R} tels

$$X = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \quad \text{et} \quad X = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$$

donc
$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}$$
, d'où $a = b = 0$,

c'est à dire que $X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \{0_{\mathcal{M}_2(\mathbb{R})}\}$, soit $E_1 \cap E_2 \subset \{0_{\mathcal{M}_2(\mathbb{R})}\}$, et comme

 E_1 et E_2 sont deux sous-espaces vectoriels de E alors $\{0_{\mathcal{M}_2(\mathbb{R})}\}\subset E_1\cap E_2$, d'où $E_1 \cap E_2 = \{0_{\mathcal{M}_2(\mathbb{R})}\}.$

d'après i) et ii) on a $E = E_1 \oplus E_2$.

Exercice 3
Soit $E = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}; (a,b) \in \mathbb{R}^2 \right\}$

- 1. (a) Montrer que E un espace vectoriel sur \mathbb{R} .
 - (b) Trouver une base de E.

2. Soit
$$f: E \to \mathbb{R}, \ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \to a + b$$

- (a) Montrer que f est linéaire.
- (b) Déterminer Ker f, noyau de f.
- (c) Déterminer G le supplémentaire de Kerf dans E.

Solution: Soit $E = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}; (a,b) \in \mathbb{R}^2 \right\}$

- 1. (a) Montrons que E un espace vectoriel sur \mathbb{R} : L'ensemble E est un sous-ensemble de $\mathcal{M}_2(\mathbb{R})$, alors il suffit de montrer que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
 - i) $E \neq \emptyset$ car la matrice nulle $O_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ est un élément de E, il suffit de prendre a = b = 0.

ii) Soient
$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
 et $B = \begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix}$ dans E , alors

$$A+B=\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}+\begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix}=\begin{pmatrix} a+a' & b+b' \\ 0+0 & a+a' \end{pmatrix}=\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$$

où $\alpha = a + a' \in \mathbb{R}$ et $\beta = b + b' \in \mathbb{R}$, donc $A + B \in E$.

iii) Soient
$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
 de E et $\lambda \in \mathbb{R}$, alors

$$\lambda A = \lambda \begin{pmatrix} \lambda a & \lambda b \\ 0 & \lambda a \end{pmatrix} = \begin{pmatrix} \alpha' & \beta' \\ 0 & \alpha' \end{pmatrix}$$

où $\alpha' = \lambda a \in \mathbb{R}$ et $\beta' = \lambda b \in \mathbb{R}$, donc $\lambda A \in E$.

D'après i), ii) et iii) on a prouvé que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$, d'où $(E, +, \times)$ est un espace vectoriel sur \mathbb{R} .

(b) Une base de E:

– Soit
$$X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
 un élément de E , on a

$$X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

donc X = aI + bJ où $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, ce qui prouve que le système $\{I,J\}$ engendre E.

– Montrons que le système $\{I,J\}$ est libre dans E : soient λ et γ deux réels tels que

$$\lambda I + \gamma J = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, montrons que $\lambda = \gamma = 0$.

On a

$$\lambda I + \gamma J = \begin{pmatrix} \lambda & \gamma \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

alors $\lambda = \gamma = 0$, donc la famille $\{I, J\}$ est libre dans E.

Le système $\{I,J\}$ est à la fois libre et générateur de E, d'où $\{I,J\}$ est une base de E.

2. Soit
$$f: E \to \mathbb{R}$$
, $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \to a + b$

(a) Montrons que l'application f est linéaire :

i) Soient
$$A=\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
 et $B=\begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix}$ deux éléments de $E,$ on a

$$f(A+B) = f\left(\begin{pmatrix} a+a' & b+b' \\ 0 & a+a' \end{pmatrix}\right) = a+a'+b+b' = (a+b)+(a'+b')$$

donc

$$f(A+B) = f\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\right) + f\left(\begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix}\right) = f(A) + f(B)$$

ii) Soient $A=\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ un élément de E et λ un réel, on a

$$f(\lambda A) = f\left(\begin{pmatrix} \lambda a & \lambda b \\ 0 & \lambda a \end{pmatrix}\right) = \lambda a + \lambda b = \lambda(a+b)$$

donc

$$f(\lambda A) = \lambda f\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\right) = \lambda f(A)$$

D'après i) et ii), on vient de prouver que l'application f est linéaire de E dans \mathbb{R} .

(b) Le noyau Ker(f) de l'application linéaire f: le noyau Ker(f) de f est

$$Ker(f) = \{ A \in E / f(A) = 0 \}$$

on a

$$f(A) = 0 \Leftrightarrow a + b = 0 \Leftrightarrow b = -a$$

alors $\operatorname{Ker}(f) = \left\{ \begin{pmatrix} a & -a \\ 0 & a \end{pmatrix} / a \in \mathbb{R} \right\} = \left\{ \alpha K / \alpha \in \mathbb{R} \right\}$ où $K = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, ce qui prouve que $\operatorname{Ker}(f)$ est le sous-espace vectoriel de E engendré par le vecteur K, soit

$$\operatorname{Ker}(f) = \overline{\operatorname{vect}\{K\}}$$

(c) Soit G le supplémentaire de Kerf dans E, soit $E=\mathrm{Ker}(f)\oplus G$. Pour tout $A=\begin{pmatrix} a&b\\0&a \end{pmatrix}$ de E, on a

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a & -a \\ 0 & a \end{pmatrix} + \begin{pmatrix} \alpha & \beta \\ \lambda & \gamma \end{pmatrix} = \begin{pmatrix} a + \alpha & -a + \beta \\ \lambda & a + \gamma \end{pmatrix}$$

donc

$$\begin{cases} a = a + \alpha \\ b = -a + \beta \\ 0 = \lambda \\ a = a + \gamma \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = a + b \\ \lambda = 0 \\ \gamma = 0 \end{cases}$$

donc G est le sous-espace vectoriel engendré par le vecteur $M = \begin{pmatrix} 0 & \xi \\ 0 & 0 \end{pmatrix}$ où ξ est un nombre réel, soit

$$G = \left\{ \begin{pmatrix} 0 & \xi \\ 0 & 0 \end{pmatrix} \middle| \xi \in \mathbb{R} \right\}$$

d'où on a $E = \operatorname{Ker}(f) \oplus G$.

Exercice 4

Soit $(\mathcal{F}(\mathbb{R}), +, \cdot)$ l'espace vectoriel sur \mathbb{R} des fonctions numérique de \mathbb{R} dans \mathbb{R} . On considère $E = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = f(x) \}$ et $F = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = -f(x) \}$

- 1. Soit E et F sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R})$.
- 2. Soit $f \in \mathcal{F}(\mathbb{R})$. On pose

$$g(x) = \frac{1}{2}(f(x) + f(-x))$$
 et $h(x) = \frac{1}{2}(f(x) - f(-x))$.

Vérifier que $g \in E$ et $h \in F$.

3. en déduire $\mathcal{F}(\mathbb{R}) = E \oplus F$.

Solution : Soit $(\mathcal{F}(\mathbb{R}), +, \cdot)$ l'espace vectoriel sur \mathbb{R} des fonctions numérique de \mathbb{R} dans \mathbb{R} . On considère

$$E = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = f(x) \} \text{ et } F = \{ f \in \mathcal{F}(\mathbb{R}) \mid \forall x \in \mathbb{R} : f(-x) = -f(x) \}$$

- 1. Montrons que E et F sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R})$:
 - (a) E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R})$, en effet,
 - i. La fonction nulle de \mathbb{R} dans \mathbb{R} , notée 0, est un élément de E car 0(-x) = 0 = 0(x) pour tout x de \mathbb{R} , donc $E \neq \emptyset$.
 - ii. Soit f et g deux éléments de E, alors pour tout x de \mathbb{R} on a

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$

donc h = f + g est une fonction paire, d'où $f + g \in E$.

iii. Soit λ un réel et f un élément de E, alors pour tout x de \mathbb{R} on a

$$(\lambda f)(-x) = \lambda f(-x) = \lambda f(x) = \lambda (f(x)) = (\lambda f)(x)$$

donc λf est une fonction paire, d'où $\lambda f \in E$.

d'après i., ii. et iii., on a E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R})$.

- (b) F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R})$, en effet,
 - i'. La fonction nulle de \mathbb{R} dans \mathbb{R} , notée 0, est un élément de E car 0(-x) = -0 = -0(x) pour tout x de \mathbb{R} , donc $F \neq \emptyset$.
 - ii'. Soit f et g deux éléments de F, alors pour tout x de $\mathbb R$ on a

$$(f+q)(-x) = f(-x) + q(-x) = -f(x) - q(x) = -(f+q)(x)$$

donc h = f + g est une fonction impaire, d'où $f + g \in F$.

iii'. Soit λ un réel et f un élément de E, alors pour tout x de \mathbb{R} on a

$$(\lambda f)(-x) = \lambda f(-x) = -\lambda f(x) = -\lambda (f(x)) = (-\lambda f)(x)$$

donc λf est une fonction impaire, d'où $\lambda f \in F$.

d'après i'., ii'. et iii'., on a F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R})$.

2. Soit $f \in \mathcal{F}(\mathbb{R})$. On pose

$$g(x) = \frac{1}{2} (f(x) + f(-x))$$
 et $h(x) = \frac{1}{2} (f(x) - f(-x))$.

Vérifions que $g \in E$ et $h \in F$.

(a) Soit x de \mathbb{R} on a

$$g(-x) = \frac{1}{2} \left(f(-x) + f(-(-x)) \right) = \frac{1}{2} \left(f(-x) + f(x) \right) = \frac{1}{2} \left(f(x) + f(-x) \right) = g(x)$$

donc $q \in E$.

(b) Soit x de \mathbb{R} on a

$$h(-x) = \frac{1}{2} \left(f(-x) - f(-(-x)) \right) = \frac{1}{2} \left(f(-x) - f(x) \right) = -\frac{1}{2} \left(f(x) - f(-x) \right) = -h(x)$$

donc $h \in F$.

- 3. Déduction $\mathcal{F}(\mathbb{R}) = E \oplus F$:
 - (a) Soit f dans $\mathcal{F}(\mathbb{R})$, on a

$$g(x) + h(x) = \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x)) = \frac{1}{2}(2f(x) + 0) = f(x)$$

donc g + h = f, d'où $\mathcal{F}(\mathbb{R}) = E + F$.

(b) Soit $f \in E \cap F$, alors $x \in E$ et $x \in F$, donc f(-x) = f(x) et -f(-x) = f(x), donc

$$f(x) + f(x) = f(-x) - f(-x) = (1-1)f(-x) = 0.f(-x) = 0$$

d'où f(x) = 0 pour tout $x \in \mathbb{R}$, soit $f \equiv 0_{\mathcal{F}(\mathbb{R})}$, c'est à dire que $E \cap F \subset \{0_{\mathcal{F}(\mathbb{R})}\}$; et comme E et F sont deux sous-espaces vectoriels de $\mathcal{F}(\mathbb{R})$, alors $\{0_{\mathcal{F}(\mathbb{R})}\} \subset E \cap F$; d'où $E \cap F = \{0_{\mathcal{F}(\mathbb{R})}\}$.

d'après (a) et (b) on a prouvé $\mathcal{F}(\mathbb{R}) = E \oplus F$.

Exercice 5

On considère l'espace vectoriel \mathbb{R}^2 muni de la base canonique (e_1, e_2) où $e_1(1,0)$ et $e_2(0,1)$:

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x y, x + y)$.
 - (a) Montrer que f est linéaire.
 - (b) Écrire la matrice de f relativement à la base (e_1, e_2) .
- 2. Soit g un endomorphisme de \mathbb{R}^2 dont la matrice relativement à la base (e_1, e_2) est $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$. Déterminer l'ensemble $\operatorname{Im} g$, image de g.

Solution : Considèrons l'espace vectoriel \mathbb{R}^2 muni de la base canonique (e_1,e_2) où $e_1(1,0)$ et $e_2(0,1)$:

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x y, x + y)$.
 - (a) Montrons que f est linéaire : en effet, soient X=(x,y) et X'=(x',y') deux éléments de \mathbb{R}^2 et $\lambda \in \mathbb{R}$, alors

i) d'abord on a
$$X+X'=(x,y)+(x',y')=(x+x',y+y')\in\mathbb{R}^2,$$
 alors

$$f(X + X') = f((x,y) + (x',y')) = f(x + x', y + y')$$

$$= (x + x' - y - y', x + x' + y + y')$$

$$= (x - y, x + y) + (x' - y', x' + y')$$

$$= f(x,y) + f(x',y')$$

donc f(X + X') = f(X) + f(X').

ii) et on a
$$\lambda X = \lambda(x, y) = (\lambda x, \lambda y) \in \mathbb{R}^2$$
, alors

$$f(\lambda X) = f((\lambda x, \lambda y)) = f(\lambda x, \lambda y) = (\lambda x - \lambda y, \lambda x + \lambda y)$$
$$= (\lambda (x - y), \lambda (x + y)) = \lambda (x - y, x + y)$$
$$= \lambda f(x, y)$$

donc
$$f(\lambda X) = \lambda f(X)$$

d'après i) et ii) l'application f est linéaire, soit f un endomorphisme.

(b) Soit $\beta = \{e_1, e_2\}$ la base canonique de \mathbb{R}^2 , la détermination de la matrice de f relativement à la base β se fait par le calcul suivant

$$f(e_1) = (1 - 0, 1 + 0) = (1, 1) = (1, 0) + (0, 1) = 1e_1 + 1e_2$$

$$f(e_2) = (0 - 1, 0 + 1) = (-1, 1) = -(1, 0) + (0, 1) = -1e_1 + 1e_2$$

donc la matrice de f relativement à la base $\beta = \{e_1, e_2\}$ est donnée par

$$\mathcal{M}_{eta}(f) = \left(egin{array}{ccc} f(e_1) & f(e_2) \\ 1 & -1 \\ 1 & 1 \end{array}
ight) egin{array}{c} e_1 \\ e_2 \end{array}$$

2. Considérons un endomorphisme de \mathbb{R}^2 g dont la matrice relativement à la base (e_1,e_2) est

$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}.$$

Déterminons l'ensemble Im(g), image de g : en effet, l'endomorphisme g est déterminer de la façon suivante

$$g(e_1) = 1e_1 - 1e_2$$
$$g(e_2) = 1e_1 - 1e_2$$

soit $X = (x, y) \in \mathbb{R}^2$, alors on a $X = (x, y) = x(1, 0) + y(0, 1) = x e_1 + y e_2$; donc

$$g(X) = g(x e_1 + y e_2) = xg(e_1) + yg(e_2) = x(1e_1 - 1e_2) + y(1e_1 - 1e_2)$$

= $(x + y) e_1 - (x + y) e_2$
= $(x + y) (e_1 - e_2)$

L'image Im(g) de l'endomorphisme g est

$$\operatorname{Im}(g) = \{ g(x,y) / (x,y) \in \mathbb{R}^2 \} = \{ (x+y) (e_1 - e_2) / (x,y) \in \mathbb{R}^2 \}$$

pour tout $(x,y) \in \mathbb{R}^2$, on pose $\alpha = x+y$ et $u = e_1 - e_2 = (1,-1)$ le vecteur de \mathbb{R}^2 , donc

$$\operatorname{Im}(g) = \{ \alpha \, u \, / \, \alpha \in \mathbb{R} \}$$

est la droite vectorielle de vecteur directeur $u = e_1 - e_2 = (1, -1)$.

Le noyau de g est

$$Ker(g) = \{(x, y) \in \mathbb{R}^2 / g(x, y) = 0_{\mathbb{R}^2} \}$$

or $g(x,y)=0_{\mathbb{R}^2} \Leftrightarrow (x+y)(e_1-e_2)$; alors x+y=0 où bien $e_1-e_2=0_{\mathbb{R}^2}$, comme $e_1-e_2\neq 0_{\mathbb{R}^2}$, d'où $\mathrm{Ker}(g)$ est la droite vectorielle du plan \mathbb{R}^2 d'équation caractéristique x+y=0.

Exercice 6

Soit E un \mathbb{K} -espace vectoriel. On désigne par id_{E} l'endomorphisme identique de E.

1. Montrer que p est un projecteur si et seulement si $id_E - p$ est un projecteur.

- 2. Soi p un projecteur de E.
 - (a) Montrer que $E = Im(p) \oplus ker(p)$.
 - (b) Montrer que $Im(id_E p) = ker(p)$ et $ker(id_E p) = Im(p)$
- 3. Soit $f \in \mathcal{L}(E)$ tel que $f(\ker(p)) \subseteq \ker(p)$ et $f(\operatorname{Im}(p)) \subseteq \operatorname{Im}(p)$. Montrer que $f \circ p = p \circ f$.

Solution : Soit E un K-espace vectoriel et id_E l'endomorphisme identique de E.

1. Montrons que p est un projecteur si et seulement si $id_E - p$ est un projecteur : \Rightarrow | Supposons que p est un projecteur sur E, on pose $q = id_E - p$ et soit $x \in E$, alors

$$q^{2}(x) = (\mathrm{id}_{E} - p) \circ (\mathrm{id}_{E} - p)(x)$$

$$= (\mathrm{id}_{E} - p)(x - p(x))$$

$$= \mathrm{id}_{E}(x) - \mathrm{id}_{E}(p(x)) - p(x) + p^{2}(x) \quad \text{où} \quad p^{2} = p \circ p$$

$$= x - p(x) - p(x) + p(x) \quad \text{car} \quad p^{2} = p$$

$$= x - p(x)$$

$$= (\mathrm{id}_{E} - p)(x)$$

donc $q^2(x) = q(x)$ pour tout $x \in E$; d'où $q^2 = q$, ce qui peouve que $q = \mathrm{id}_E - p$ est un projecteur de E.

 \Leftarrow Supposons que $q = \mathrm{id}_E - p$ est un projecteur de E, alors $q^2 = q$; donc $q^2(x) = q(x)$ pour tout $x \in E$, donc

$$x - p(x) = (\mathrm{id}_E - p) \circ (\mathrm{id}_E - p)(x)$$
$$= \mathrm{id}_E(x) - 2p(x) + p^2(x)$$
$$= x - 2p(x) + p^2(x)$$

donc $(2-1)p(x)=p^2(x)$ pour tout $x\in E$; d'où $p^2=p$, ce qui peouve que p est un projecteur de E.

- 2. Soit p un projecteur de E.
 - (a) Montrons que $E = Im(p) \oplus Ker(p) : E = Im(p) \oplus Ker(p)$ si et seulement si on a à la fois les deux propriétés suivantes
 - i) $\operatorname{Im}(p) \cap \operatorname{Ker}(p) = \{0_E\}$
 - ii) et E = Im(p) + Ker(p)

*Soit $x \in E$, alors x = (x - p(x)) + p(x) = y + z où y = x - p(x) et z = p(x) on a bien $z = p(x) \in \text{Im}(p)$ et on a aussi

$$p(y) = p(x - p(x))$$

$$= p(x) - p^{2}(x)$$

$$= p(x) - p(x) \quad \text{car} \quad p^{2} = p$$

$$= (1 - 1)p(x)$$

donc $p(y) = 0_E$; d'où $y = x - p(x) \in \text{Ker}(p)$; ce qui prouve la propriété i).

*Soit $x \in \text{Im}(p) \cap \text{Ker}(p)$, alors $x \in \text{Ker}(p)$ et $x \in \text{Im}(p)$,

donc $p(x) = 0_E$ et il existe $y \in E$ tel que x = p(y),

d'où $p(x) = 0_E$ et $p(x) = p^2(y) = 0_E = p(y)$,

or p est linéaire, alors $y = 0_E$ ce qui prouve que $x = p(y) = p(0_E) = 0_E$,

d'où $x \in \{0_E\}$ soit $\operatorname{Im}(p) \cap \operatorname{Ker}(p) \subset \{0_E\},$

comme Im(p) et Ker(p) sont deux espaces vectoriels, alors $\{0_E\} \subset \text{Ker}(p)$ et $\{0_E\} \subset \text{Im}(p)$, soit $\{0_E\} \subset \text{Ker}(p) \cap \text{Im}(p)$; d'où Im(p) $\cap \text{Ker}(p) = \{0_E\}$; ce qui prouve la propriété ii).

D'après i) et ii) il vient la somme directe $E = Im(p) \oplus Ker(p)$.

- (b) Montrons que $\operatorname{Im}(\operatorname{id}_E p) = \ker(p)$ et $\ker(\operatorname{id}_E p) = \operatorname{Im}(p)$:
 - Montrons que Im(id_E − p) = ker(p) : soit $y \in \text{Im}(\text{id}_E p)$, alors il existe $x \in E$ tel que $y = (\text{id}_E p)(x)$; donc y + p(x) = x, on a p(x) ∈ Im(p) et p(y+p(x)) = p(x), alors p(x) = p(y)+p²(x) = p(y)+p(x), donc p(y) = 0_E, c'est à dire que $y \in \text{Ker}(p)$; d'où $y \in \text{Ker}(p)$, finalement Im(id_E − p) ⊂ Ker(p), ceci d'une part et d'autre soit $y \in \text{Ker}(p)$, alors p(y) = $0_E = y y$;

donc $y = y - p(y) = (id_E - p)(y)$; d'où $y \in Im(id_E - p)$; soit $Ker(p) \subset Im(id_E - p)$ finalement, il vient $Ker(p) = Im(id_E - p)$.

– Montrons que $\ker(\mathrm{id}_E-p)=\mathrm{Im}(p)$: on vient de montrer que $\mathrm{Ker}(p)=\mathrm{Im}(\mathrm{id}_E-p)$ pour tout projecteur p de E; alors d'après la question 1. on a p est un projecteur si et seulement si id_E-p est un projecteur; donc $\mathrm{Ker}(q)=\mathrm{Im}(\mathrm{id}_E-q)$, or pour $q=\mathrm{id}_E-p$, alors on obtient

$$Ker(id_E - p) = Im(id_E - id_E + p) = Im(p).$$

3. Soit $f \in \mathcal{L}(E)$ tel que $f(\ker(p)) \subseteq \ker(p)$ et $f(\operatorname{Im}(p)) \subseteq \operatorname{Im}(p)$, montrons que $f \circ p = p \circ f$: soit $x \in E$, comme $E = \operatorname{Im}(p) \oplus \ker(p)$, alors $\exists ! x_1 \in \operatorname{Im}(p), \exists ! x_2 \in \operatorname{Ker}(p)$ tel que $x = x_1 + x_2$; donc on a

$$f(p(x)) = f(p(x_1 + x_2))$$

= $f(p(x_1)) + f(p(x_2))$ car p et f sont linéaires
= $f(p(x_1))$

car $f(p(x_2)) = f(0_E) = 0_E$ puisque $x_2 \in Ker(p)$. Et, on a

$$p(f(x)) = p(f(x_1 + x_2))$$

= $p(f(x_1) + f(x_2))$ car f est linéaire
= $p(f(x_1)) + p(f(x_2))$ car f est linéaire

or $x_2 \in \text{Ker}(p)$, alors $f(x_2) \in \text{Ker}(p)$ car $f(\text{ker}(p)) \subseteq \text{ker}(p)$; donc $p(f(x_2)) = 0_E$; d'où $p(f(x)) = p(f(x_1))$;

et comme $f(\operatorname{Im}(p)) \subseteq \operatorname{Im}(p)$ alors $f(x_1) \in \operatorname{Im}(p)$, donc $p(f(x_1)) = f(x_1) = f(p(x_1))$ puisque $(x_1 \in \operatorname{Im}(p) \text{ implique } p(x_1) = x_1)$;

finalement f(p(x)) = p(f(x)) pour tout $x \in E$; ce qui prouve que $f \circ p = p \circ f$.

Exercice 7

Soit $\mathcal{C}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions numériques continues sur \mathbb{R} . Soit $\mathcal{C}^2(\mathbb{R})$ l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 sur \mathbb{R} .

- 1. Vérifier que $\mathcal{C}^2(\mathbb{R})$ est un sous-ensemble de $\mathcal{C}(\mathbb{R})$. Que peut-on déduire?
- 2. Soit Φ une application de $\mathcal{C}^2(\mathbb{R})$ dans $\mathcal{C}(\mathbb{R})$, qui a une fonction f de $\mathcal{C}^2(\mathbb{R})$ associe la fonction g = f'' + 2f' + f.
 - (a) Exprimer l'écriture symbolique de l'application Φ , puis montrer que Φ est un homomorphisme d'espaces vectoriels.

- (b) Déterminer le noyau $Ker(\Phi)$ de Φ . L'application Φ est-elle injective?
- (c) Le noyau $Ker(\Phi)$ est-il de dimension finie? **Justifier**
- (d) L'application Φ est-elle surjective? est-elle un isomorphisme d'espaces vectoriels?

Solution : Soit $\mathcal{C}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions numériques continues sur \mathbb{R} . Soit $\mathcal{C}^2(\mathbb{R})$ l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 sur \mathbb{R} .

- 1. Vérifions que $\mathcal{C}^2(\mathbb{R})$ est un sous-ensemble de $\mathcal{C}(\mathbb{R})$: soit f un élément de $\mathcal{C}^2(\mathbb{R})$ alors f est deux fois dérivables et f'' est une fonction continue. Or une fonction dérivable est une fonction continue; d'où $f \in \mathcal{C}(\mathbb{R})$; finalement $\mathcal{C}^2(\mathbb{R})$ est un sous-ensemble de $\mathcal{C}(\mathbb{R})$. On en déduit que l'ensemble $\mathcal{C}^2(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{C}(\mathbb{R})$: en effet,
 - $\mathcal{C}^2(\mathbb{R}) \neq \emptyset$ car la fonction nulle est un élément de $\mathcal{C}^2(\mathbb{R})$.
 - Soient f et g deux éléments de $\mathcal{C}^2(\mathbb{R})$, alors f'' et g'' existent et sont continues; donc

$$f''(x) + q''(x) = (f'' + q'')(x) = (f + q)''(x), \quad \forall x \in \mathbb{R}$$

soit (f+g)'' existe et elle est continue sur \mathbb{R} ; d'où $f+g\in\mathcal{C}^2(\mathbb{R})$.

• Soient f un élément de $\mathcal{C}^2(\mathbb{R})$ et λ un scalaire réel, alors f'' existe et est continue; donc

$$\lambda f''(x) = (\lambda f'')(x) = (\lambda f)''(x), \quad \forall x \in \mathbb{R}$$

soit $(\lambda f)''$ existe et elle est continue sur \mathbb{R} ; d'où $\lambda f \in \mathcal{C}^2(\mathbb{R})$.

- 2. Soit Φ une application de $\mathcal{C}^2(\mathbb{R})$ dans $\mathcal{C}(\mathbb{R})$, qui a une fonction f de $\mathcal{C}^2(\mathbb{R})$ associe la fonction g = f'' + 2f' + f.
 - (a) L'écriture symbolique de l'application Φ est :

$$\Phi: \mathcal{C}^2(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R}), f \longmapsto \Phi(f) = f'' + 2f' + f = g.$$

Montrons que Φ est un homomorphisme d'espaces vectoriels : en effet,

- L'application Φ est bien définie, en effet, pour tout f dans $\mathcal{C}^2(\mathbb{R})$ la fonction g = f'' + 2f' + f définie pour tout $x \in \mathbb{R}$ par g(x) = f''(x) + 2f'(x) + f(x) est continue sur \mathbb{R} ; donc $g = f'' + 2f' + f \in \mathcal{C}(\mathbb{R})$ pour tout $f \in \mathcal{C}^2(\mathbb{R})$; d'où $\Phi(f) \in \mathcal{C}(\mathbb{R})$ pour tout $f \in \mathcal{C}^2(\mathbb{R})$.
- Soient f et g deux éléments de $\mathcal{C}^2(\mathbb{R})$, alors $f+g\in\mathcal{C}^2(\mathbb{R})$; donc pour tout $x\in\mathbb{R}$ on a

$$\Phi(f+g)(x) = (f+g)''(x) + 2(f+g)'(x) + (f+g)(x)$$

$$= f''(x) + g''(x) + 2f'(x) + 2g'(x) + f(x) + g(x)$$

$$= (f''(x) + 2f'(x) + f(x)) + (g''(x) + 2g'(x) + g(x))$$

$$\operatorname{car}(\mathbb{R}, +) \text{ est un groupe ab\'elien}$$

$$= \Phi(f)(x) + \Phi(g)(x)$$

d'où $\Phi(f+g) = \Phi(f) + \Phi(g)$ pour tout f et g dans $C^2(\mathbb{R})$.

• Soient f un élément de $\mathcal{C}^2(\mathbb{R})$ et λ un scalaire réel, alors λ $f \in \mathcal{C}^2(\mathbb{R})$; donc pour tout $x \in \mathbb{R}$ on a

$$\Phi(\lambda f)(x) = (\lambda f)''(x) + 2(\lambda f)'(x) + (\lambda f)(x)$$

$$= \lambda f''(x) + 2\lambda f'(x) + \lambda f(x)$$

$$= \lambda (f''(x) + 2f'(x) + f(x))$$

$$= \lambda \Phi(f)(x)$$

d'où $\Phi(\lambda f) = \lambda \Phi(f)$ pour tout f dans $C^2(\mathbb{R})$ et λ dans \mathbb{R} .

(b) Déterminons le noyau $Ker(\Phi)$ de Φ : par définbition le noyau de Φ est

$$Ker(\Phi) = \{ f \in \mathcal{C}^2(\mathbb{R}) / \Phi(f) = 0 \}$$

or $\Phi(f) = 0$ est l'équation différentielle suivante f'' + 2f' + f = 0 définie pour tout $x \in \mathbb{R}$ par f''(x) + 2f'(x) + f(x) = 0; donc il suffit de déterminer f vérifiant cette équation différentielle. L'équation caractéristique de cette équation différentielle est $r^2 + 2r + 1 = (r+1)^2 = 0$. Comme l'équation caractéristique admet une racine double r = -1, alors la solution de l'équation différentielle est

$$f(x) = (\alpha x + \beta) e^{-x} \quad \forall x \in \mathbb{R}$$

où α et β sont des réels. Finalement, $\operatorname{Ker}(\Phi)$ est l'ensemble des solutions de l'équation différentielle f'' + 2f' + f = 0, soit

$$Ker(\Phi) = \{ (\alpha x + \beta) e^{-x} / (\alpha, \beta) \in \mathbb{R}^2 \}$$

L'application Φ n'est pas injective, en effet, il suffit de prendre $f_1(x) = (x+1) e^{-x}$ et $f_2(x) = (5x+3) e^{-x}$, alors f_1 et f_2 vérifient $\Phi(f_1) = \Phi(f_2)$ mais $f_1 \neq f_2$.

(c) Le noyau $\operatorname{Ker}(\Phi)$ est de dimension finie, en effet, pour tout $f \in \operatorname{Ker}(\Phi)$ il existe α et β des scalaires réels tels que $f(x) = (\alpha x + \beta) e^{-x}$ pour tout $x \in \mathbb{R}$; donc on a

$$f(x) = \alpha \left(x e^{-x} \right) + \beta \left(e^{-x} \right)$$

donc le système $\{e^{-x}\,;\,x\,e^{-x}\}$ engendre $\mathrm{Ker}(\Phi).$

Le système $\{e^{-x}\,;\,x\,e^{-x}\}$ est libre, en effet, soit α et β des scalaires réels tels que $(\alpha\,x\,+\,\beta)\,e^{-x}\,=\,0\,;$ comme $e^{-x}\,\neq\,0$ pour tout $x\,\in\,\mathbb{R}$, alors $\alpha\,x\,+\,\beta\,=\,0$, donc $\alpha\,=\,\beta\,=\,0$ puisque $\{1,x\}$ est libre ; d'où le système $\{e^{-x}\,;\,x\,e^{-x}\}$ est libre.

Le système $\{e^{-x}; xe^{-x}\}$ est libre et engendre $\operatorname{Ker}(\Phi)$, alors le système $\{e^{-x}; xe^{-x}\}$ est une base de $\operatorname{Ker}(\Phi)$; d'où $\operatorname{Ker}(\Phi)$ est de dimension finie, soit

$$\dim_{\mathbb{R}}(\mathrm{Ker}(\Phi)) = 2.$$

(d) L'application Φ n'est pas surjective, en effet, l'image $\operatorname{Im}(\Phi)$ de Φ est

$$\operatorname{Im}(\Phi) = \Phi(\mathcal{C}^2(\mathbb{R})) = \{ g = f'' + 2f' + f \ / \ f \in \mathcal{C}^2(\mathbb{R}) \}$$

qui est un sous-espace vectoriel de $\mathcal{C}(\mathbb{R})$; <u>mais</u> on peut trouver des éléments $g \in \mathcal{C}(\mathbb{R})$ qui ne s'écrivent pas sous la forme $\Phi(f)$. Pour cela, il suffit de prendre les fonctions continues par morceaux.

L'application Φ n'est ni injective ni surjective, alors Φ n'est pas un isomorphisme d'espaces vectoriels.

Exercice 8

Soit $E = \{(u_n)_{n \in \mathbb{N}} / u_{n+2} = a u_{n+1} + b u_n; (a, b) \in \mathbb{R}^2 \}$

- 1. Montrer que E est un espace vectoriel sur \mathbb{R} .
- 2. Soit $\varphi: E \to \mathbb{R}^2$, $(u_n)_{n \in \mathbb{N}} \mapsto (u_0, u_1)$. Montrer que φ est un isomorphisme d'espaces vectoriels, puis en déduire la dimension de E.
- 3. On considère l'équation :

$$(\mathcal{Q}) : \quad x^2 - ax - b = 0$$

Montrer que si l'équation (\mathcal{Q}) admet deux solutions complexes z_1 et z_2 , alors les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ forment une base de E avec

$$\alpha_n = \frac{1}{2}(z_1^n + z_2^n)$$
 et $\beta_n = \frac{1}{2i}(z_1^n - z_2^n)$

4. **Application** : Déterminer u_n en fonction de n dans le cas suivant :

$$u_{n+2} = 2u_{n+1} - 2u_n$$
, $u_0 = 1$, $u_1 = 2$.

Solution : Soit $\mathscr{S} = \{(u_n)_{n \in \mathbb{N}} / u_n \in \mathbb{R}, \forall n \in \mathbb{N} \}$ l'espace vectoriel des suites réelles et E l'ensemble donné par

$$E = \{(u_n)_{n \in \mathbb{N}} / u_{n+2} = a u_{n+1} + b u_n; \ (a, b) \in \mathbb{R}^2 \}$$

- 1. Montrons que E est un espace vectoriel sur \mathbb{R} : pour cela il suffit de montrer que E est un sous-espace vectoriel de \mathscr{S} . Tout d'abord E est un sous-ensemble de \mathscr{S} car tout élément $(u_n)_{n\in\mathbb{N}}$ satisfaisant la propriété $u_{n+2}=a\,u_{n+1}+b\,u_n$ où $(a,b)\in\mathbb{R}^2$ reste une suite réelle, donc $E\subset\mathscr{S}$.
 - (i) La suite $(u_n = 0)_{n \in \mathbb{N}}$ satisfait la condition 0 = a.0 + b.0, alors $E \neq \emptyset$.
 - (ii) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ dans E, on a

$$u_{n+2} + v_{n+2} = a u_{n+1} + b u_n + a v_{n+1} + b v_n$$

= $a(u_{n+1} + v_{n+1}) + b(u_n + v_n)$

donc $(u_n + v_n)_{n \in \mathbb{N}}$ est un élément dans E.

(iii) Soient $(u_n)_{n\in\mathbb{N}}$ dans E et $\lambda\in\mathbb{R}$, on a

$$\lambda u_{n+2} + v_{n+2} = \lambda (a u_{n+1} + b u_n)$$
$$= \lambda a u_{n+1} + \lambda b u_n$$
$$= a(\lambda u_{n+1}) + b(\lambda u_n)$$

donc $(\lambda u_n)_{n\in\mathbb{N}}$ est un élément dans E.

d'après (i), (ii) et (iii) on a montré que E est un sous-espace vectoriel de \mathscr{S} ; ce qui prouve que $(E,+,\times)$ est un espace vectoriel sur \mathbb{R} .

2. Soit $\phi: E \to \mathbb{R}^2$, $(u_n)_{n \in \mathbb{N}} \mapsto (u_0, u_1)$.

– Montrons que ϕ est un isomorphisme d'espaces vectoriels : l'application ϕ est linéaire, en effet, soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ dans E et $(\alpha,\beta)\in\mathbb{R}^2$, on a

$$\phi(\alpha(u_n) + \beta(v_n)) = \phi((\alpha u_n + \beta v_n))$$

$$= (\alpha u_0 + \beta v_0, \alpha u_1 + \beta v_1)$$

$$= \alpha(u_0, u_1) + \beta(v_0, v_1)$$

$$= \alpha\phi((u_n)) + \beta\phi((v_n))$$

donc ϕ est linéaire. On peut montrer que ϕ est injective, soit $(u_n)_{n\in\mathbb{N}}$ tel que $\phi((u_n)) = 0_{\mathbb{R}^2}$, alors $(u_0, u_1) = (0, 0)$, donc $u_2 = a\,u_1 + b\,u_0 = a.0 + b.0 = 0$; puis on montre par récurrence que $((u_n = 0))_{n\in\mathbb{N}}$, d'où $\operatorname{Ker}(\phi) = \{(0)_{n\in\mathbb{N}}\}$, ceci d'une part et d'autre ϕ est surjective car les termes u_0 et u_1 d'une suite réelle de type $(u_n)_{n\in\mathbb{N}}$ existent, ce qui fait que par construction ϕ est surjective. Finalement, ϕ est un isomorphisme d'espaces vectoriels.

- La dimension de E: on a E et \mathbb{R}^2 sont isomorphes via ϕ et comme $\dim_{\mathbb{R}}(\mathbb{R}^2) = 2$, alors $\dim_{\mathbb{R}}(E) = 2$.
- 3. Soit l'équation:

$$(\mathcal{Q}) : \quad x^2 - ax - b = 0$$

Supposons que l'équation (Q) admet deux solutions complexes z_1 et z_2 , montrons que le système

 $\{(\alpha_n)_{n\in\mathbb{N}}, (\beta_n)_{n\in\mathbb{N}}\}$ forme une base de E avec $\alpha_n = \frac{1}{2}(z_1^n + z_2^n)$ et $\beta_n = \frac{1}{2i}(z_1^n - z_2^n)$. Comme $\dim_{\mathbb{R}}(E) = 2$, alors il suffit de montrer que le système $\{(\alpha_n)_{n\in\mathbb{N}}, (\beta_n)_{n\in\mathbb{N}}\}$ est libre de E.

Soit λ et γ deux réels tels que $\lambda \alpha_n + \gamma \beta_n = 0$, alors

- pour n=0 et n=1 on a

$$\begin{cases} \lambda \alpha_0 + \gamma \beta_0 &= 0 \\ \lambda \alpha_1 + \gamma \beta_1 &= 0 \end{cases} \Leftrightarrow \begin{cases} \lambda + \gamma \cdot 0 &= 0 \\ \lambda \frac{1}{2} (z_1 + z_2) + \gamma \frac{1}{2i} (z_1 - z_2) &= 0 \end{cases}$$

donc $\lambda = 0$ et d'où $\gamma = 0$ puisque $z_1 \neq z_2$.

- Par récurrence sur n, on a $\lambda \alpha_n + \gamma \beta_n = 0$ entraine $\lambda = \gamma = 0$. ce qui prouve que la famille $\{(\alpha_n)_{n \in \mathbb{N}}, (\beta_n)_{n \in \mathbb{N}}\}$ est libre et donc $\{(\alpha_n)_{n \in \mathbb{N}}, (\beta_n)_{n \in \mathbb{N}}\}$ est une base de E.
- 4. **Application**: soit à déterminer u_n en fonction de n dans le cas où $u_{n+2} = 2u_{n+1} 2u_n$, $u_0 = 1$, $u_1 = 2$. L'équation (\mathcal{Q}) est alors $x^2 2x + 2 = 0$ dont le discriminant $\Delta = b^2 4ac = 2^2 4 \times 2 \times 1 = -4 = (2i)^2$, les solutions sont alors $z_1 = 1 + i$ et $z_2 = \overline{z_1} = 1 i$.

On écrit $z_1 = \sqrt{2} \left(\cos(\frac{\pi}{4}) + i \sin(\frac{\pi}{4}) \right)$ et $z_2 = \sqrt{2} \left(\cos(\frac{\pi}{4}) - i \sin(\frac{\pi}{4}) \right)$.

Et, par suite on a $u_n \in E$ alors $u_n = \lambda \alpha^n + \gamma \beta^n$ est une combinaison linéaire unique, donc

$$u_n = \lambda \operatorname{Re}(z_1^n) + \gamma \operatorname{Im}(z_1^n) = (\sqrt{2})^n \left(\lambda \cos\left(\frac{n\pi}{4}\right) + \gamma \sin\left(\frac{n\pi}{4}\right)\right)$$

– pour n = 0, alors on a $u_0 = \lambda$,

- pour n = 1, alors on a $u_1 = \sqrt{2} \left(\lambda \frac{\sqrt{2}}{2} + \gamma \frac{\sqrt{2}}{2} \right)$, donc $\lambda = \gamma = 1$ ainsi on a $u_n = (\sqrt{2})^n \left(\cos \left(\frac{n\pi}{4} \right) + \sin \left(\frac{n\pi}{4} \right) \right)$.